Sabtu, 23 Februari 2013

Definisi Plastic Injection Molding



Plastic Injection Molding ( PIM ) merupakan metode proses produksi yang cenderung menjadi pilihan untuk digunakan dalam menghasilkan atau memproses komponen-komponen yang kecil dan berbentuk rumit, dimana biayanya lebih murah jika dibandingkan dengan menggunakan metode-metode lain yang biasa digunakan (Boses, 1995). Gambar 2.1 memperlihatkan kemampuan pemrosesan dan tingkat ketelitian komponen yang dihasilkan dengan PIM dibandingkan dengan proses-proses lain. Proses ini mampu menghasilkan bentuk rumit dalam jumlah besar maupun kecil pada hampir semua jenis bahan termasuk logam, keramik, campuran logam dan plastik.
Salah satu keistimewaan proses PIM ialah kemampuannya dalam menggabungkan dan menggunakan kelebihan-kelebihan teknologi seperti kemampuan pembentukan bahan plastik, ketepatan dalam proses pencetakan dan kebebasan memilih bahan. Hal ini digambarkan pada gambar 2.2. Komponen yang dihasilkan dengan teknologi PIM kini banyak digunakan dalam industri otomotif, kimia, penerbangan, listrik, komputer, kedokteran dan peralatan militer.
                               
                      Keistimewaan Proses Plastic Injection Molding ( PIM )
Secara umum proses PIM dibagi menjadi beberapa tahap seperti pada gambar diatas.  Proses ini dimulai dengan mencampur serbuk dan bahan pengikat. Kemudian campuran ini dibutirkan lalu disuntik ke dalam cetakan ( mould) sesuai dengan bentuk yang diinginkan. Komponen yang dihasilkan dari proses injeksi disebut Green Compact. Bahan pengikat yang digunakan kemudian dipisahkan melalui proses yang disebut sebagai proses pemisahan (debinding). Komponen yang telah dibuang bahan pengikatnya disebut Brown Compact, yang selanjutnya dipanaskan pada suhu di bawah titik didih bahan utama plastik yang digunakan. Proses ini disebut proses pemanasan (sintering). Komponen hasil pemanasan lalu didinginkan.
 Tahapan Proses Plastic Injection Molding ( PIM ) (German 1990 )
Masalah biaya sering menjadi kendala dalam usaha pengembangan teknologi manufaktur. Hal ini juga terjadi pada proses PIM. Biaya bahan mentah yang terdiri dari serbuk plastik dan bahan pengikat diperkirakan hampir 25,36 % dari biaya keseluruhan. Sedangkan bahan pengikat diperkirakan 40% dari biaya bahan mentah tersebut dan ini relatif tinggi, sehingga dianggap penting untuk menemukan pengganti bahan pengikat tersebut dengan biaya yang lebih ekonomis dan mempunyai sifat-sifat yang diinginkan.
Pengenalan Bahan Baku
Plastik adalah bahan sintetis yang dapat diubah bentuk dan dapat mempertahankan perubahan bentuk serta dikeraskan tergantung pada strukturnya.
Pada dasarnya plastik secara umum digolongkan ke dalam 3 (tiga) macam dilihat dari temperaturnya  yakni :
1. Bahan Thermoplastik (Thermoplastic) yaitu akan melunak bila dipanaskan dan setelah didinginkan akan dapat mengeras. Contoh bahan thermoplastik adalah : Polistiren, Polietilen, Polipropilen, Nilon, Plastik fleksiglass dan Teflon.
2. Bahan Thermoseting (Thermosetting) yaitu plastik dalam bentuk cair dan dapat dicetak sesuai yang diinginkan serta akan mengeras jika dipanaskan dan tetap tidak dapat dibuat menjadi plastik lagi. Contoh bahan thermosetting adalah : Bakelit, Silikon dan Epoksi.
3. Bahan Elastis (Elastomer) yaitu bahan yang sangat elastis. Contoh bahan elastis adalah : karet sintetis.
Berikut pembagian polymer secara umum :
( sumber : Pengetahuan Dasar Plastik, penerbit : PT. Tri Polyta Indonesia, tbk )
Polimer memiliki beberapa karakteristik untuk menggambarkan sifat fisik dan sifat kimianya. Sifat-sifat tersebut akan mempengaruhi aplikasi penggunaan polimer tersebut.
 Karakteristik polimer antara lain :
1. Crystallinity (kristalinitas)
Struktur polimer yang tidak tersusun secara teratur umumnya memiliki warna transparan. Karakteristik ini membuat polimer dapat digunakan untuk berbagai aplikasi seperti pembungkus makanan, kontak lensa dan sebagainya. Semakin tinggi derajat kristalisasinya, semakin sedikit cahaya yang dapat melewati polimer tersebut.
2. Thermosetting dan Thermoplastic (Daya tahan terhadap panas)
Berdasarkan ketahanannya terhadap panas, polimer dibedakan menjadi polimer thermoplastic dan thermosetting. Polimer thermoplastic dapat melunak bila dipanaskan, sehingga jenis polimer ini dapat dibentuk ulang. Sedangkan polimer thermosetting setelah dipanaskan tidak dapat dibentuk ulang. Ketahanan polimer terhadap panas ini membuatnya dapat digunakan pada berbagai aplikasi antara lain untuk insulasi listrik, insulasi panas, penyimpanan bahan kimia dan sebagainya.
3. Branching (percabangan)
Semakin banyak cabang pada rantai polimer maka densitasnya akan semakin kecil. Hal ini akan membuat titik leleh polimer berkurang dan elastisitasnya bertambah karena gaya ikatan intermolekularnya semakin lemah.
4. Tacticity (taktisitas)
Taktisitas menggambarkan susunan isomerik gugus fungsional dari rantai karbon. Ada tiga jenis taktisitas yaitu isotaktik dimana gugus-gugus subtituennya terletak pada satu sisi yang sama, sindiotaktik dimana gugus-gugus subtituennya lebih teratur, dan ataktik dimana gugus-gugus subtituennya terletak pada sisi yang acak.
Beberapa keuntungan plastik (Ilham, 2007) adalah :
1. Massa jenis rendah (0,9 - 2,2 [g/cm3])
2. Tahan terhadap arus listrik dan panas, memiliki sedikit elektron bebas untuk mengalirkan panas dan arus listrik.
3. Tahan terhadap korosi kimia karena tidak terionisasi untuk membentuk elektron kimia. Pada umumnya tahan terhadap larutan kimia, dan logam juga sangat sukar untuk larut.
4. Mempunyai permukaan dan penampakan yang sangat baik dan mudah diwarnai.
Kerugian plastik (Ilham, 2007) adalah :
1. Modulus elastisnya rendah.
2. Mudah mulur (Creep) pada suhu kamar.
3. Maksimum temperatur nominalnya rendah.
4. Mudah patah pada sudut bagian yang tajam.
Secara umum Thermoplastic tidak tahan terhadap temperatur tinggi, kecuali Teflon. Bahan-bahan Thermoplastic akan meleleh bila dipanaskan pada temperatur tinggi, sedangkan pada bahan-bahan Thermosetting tidak terbakar tapi akan terpisah dan hancur.
Temperatur pelelehan dan pemisahan untuk bahan-bahan plastik jauh lebih rendah dibandingkan baja. Plastik akan memanjang (Creep) pada temperatur kamar. Kecenderungan bahan plastik akan mulur bila temperaturnya naik menunjukkan bahwa perubahan kecil saja pada temperatur dapat mempengaruhi sifat-sifat fisik bahan. Pengaruh temperatur dan laju regangan pada tegangan tarik harus dievaluasi dengan baik bila plastik akan digunakan. Pertama terjadi deformasi elastis seketika, diikuti deformasi melar, setelah waktu tertentu apabila tegangan hilang dari benda uji sebagian akan kembali ke bentuk semula setelah waktu yang lama. Cara deformasi seperti ini banyak ditemukan, suatu garis pendekatan yang sering
dipakai untuk berbagai bahan mempergunakan empat model unsur kombinasi pegas dan peredam.


Tidak ada komentar: